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ABSTRACT 

The interpretation of scatterometry measurements generally assumes that the grating extends over an area 

large enough to intercept all the illumination provided by an incident beam.  However, in practice, the grat-

ings used in scatterometry are relatively small.  Thus, the detected light also includes both that scattered by 

the grating as well as that from a region surrounding the grating because, generally, the incident beam illumi-

nates both the grating and the surrounding region.  To model the effects of such real structures, simulations of 

the effective reflectance were performed whereby the reflection from the grating was considered to be the 

sum of the diffraction by the grating and the diffraction of the surrounding region, taking into account the 

beam profile.  To demonstrate the model, the illumination field was assumed to be Gaussian.  Results are 

shown for a specific target design consisting of a 50 µm square measured by normal incidence reflectometry. 

Significant errors occur when the incident profile has wings that fall outside of the profile and when the scat-

tered light is partially apertured. 
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1. INTRODUCTION 

There has been a lot of recent interest in using the spectroscopic- and angle-resolved reflection properties of micro-

gratings for critical dimension (CD) metrology in microfabrication applications.1-3  Comparison of measured optical 

signatures with theoretically-determined signatures from model structures is used to deduce the dimensions and shape 

of the lines. Termed scatterometry, the technique has a number of advantages over competing techniques, such as 

atomic force microscopy (AFM) or scanning electron microscopy (SEM).  For example, it can be configured as an in-

line metrology, it is very sensitive, it statistically averages CD over a large number of lines, and it has high throughput.  

While scatterometry can be very precise, there are a number of issues that may detrimentally affect overall accuracy, 
such as accuracy of the optical properties used to simulate the signal, simplification of the profile, and line-edge and 

line-width roughness.  In this manuscript, we consider the effects that finite grating size will have on scatterometry. 

Scatterometry targets are typically square with side dimensions on the order of 50 µm to 100 µm.  There is consi-

derable industry pressure to reduce the dimensions of these targets, because real estate on product wafers is valuable.  

On the other hand, focusing onto the target is limited by the diffraction of the light.  While a highly focused light source 

can be used, computation becomes significantly more intensive if the incident waves cannot be assumed to have a sin-

gle incident angle.  Inevitably, there is bleeding of the light into regions outside of the target, and reflected light from 

the surrounding regions contributes to the signal. Overfilling of the target will contribute to uncertainties in the mea-

surement of target reflectance, and in turn, the extracted dimensions of lines. 

In this manuscript, we make some preliminary estimates of the effects of finite target size.  We assume that the tar-

get modulates the phase and amplitude of the reflected field differently than the surrounding region. We illuminate the 
target and surrounding region by applying a focused wave, and we treat the outgoing wave with Huygens-Fresnel dif-

fraction theory.  In Sec. 2, we develop the theory for diffraction by the target and the surrounding region, assuming that 

the target is square and illuminated with a Gaussian beam.  In Sec. 3, we investigate the implications of the theory by 

considering illumination of a 50 µm square target with a Gaussian beam of 20 µm radius, using a variable size collec-
tion aperture and moving the sample around the center of the beam.  We also consider the case of a spectroscopic mea-

surement.  We discuss the results in Sec. 4, and suggest possible tests for the effect of finite target size in a particular 

instrument.  Finally, in Sec. 5, we make some conclusions. 
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Figure 1. Schematic of the problem considered and the approximation that is made in this paper.  The square grating 
target is over-illuminated by a Gaussian beam (ellipse).  The field scattered by the system is treated as the sum of the 
diffraction by the square target and that of the region outside the target. 

2. THEORY 

The target is assumed to consist of a single square region of dimensions L L× , inside of which exists a periodic 

grating and outside of which exists a simple, potentially layered, medium.  The target is illuminated at an angle iθ  with 

a focused beam, whose field incE  in the plane of the sample is assumed to be a plane wave, modulated by an elliptical-

ly-elongated Gaussian profile, 
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where the 2
1/ e  beam radius is

0
w , the magnitude of the propagation vector is 2 /k π λ= , and λ  is the wavelength.  

The z direction is along the surface normal, and the direction of the incident wave is assumed to be in the x-z plane. The 

wave in Eq. (1) is normalized to unit power. The principal approximation that will be made is illustrated in Fig. 1.  That 

is, we will assume that the field diffracted by the target consists of a sum of the field diffracted by the inside and that 

diffracted by the outside.  The intensity is then given by  
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where inside ( , )x yS k k  represents the scalar diffraction field for the Gaussian beam-illuminated target, outside ( , )x yS k k  

represents the scalar diffraction field for the Gaussian-beam-blocked by the target, insider  represents the complex reflec-

tance coefficient of the target, and outsider  represents the complex reflectance coefficient of the region outside of the 

target.  This approximation is valid if the target is large enough that the fields inside the target and those outside the 

target are not influenced by the edges of the target. The fields and intensities of the outgoing waves are treated as a 

function of the components, xk  and yk , of the propagation vector onto the sample plane.  In terms of the polar diffrac-

tion angle θ  and azimuthal diffraction angle φ , these are given by 
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According to the Huygens-Fresnel principle, the scalar diffraction of a Gaussian beam incident upon a square aperture 

is given by the truncated Fourier transform of Eq. (1),4 
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which for the Gaussian beam profile given in Eq. (1) may be evaluated,  
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where erf( )z  is the complex error function.  The region of integration consists of the square target, which is offset in 

position by coordinates 0 0( , )x y .  Likewise, the scalar diffracted field from the region outside the target is given by 

 outside total inside( , ) ( , ) ( , )x y x y x yS k k S k k S k k= − , (6) 

where  
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When we compute signals, we perform an integral over the intensity to yield a power, 
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where the integral is over the region subtended by the detector aperture. We also compute the power one would meas-

ure from an infinitely conducting surface inside outside( 1)r r= = , 
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The measured effective reflectance of the sample is then  

 ref/R P P= . (10) 

The complex coefficients insider  and outsider  for reflection from the structures inside and outside the target, respectively, 

are dependent upon the polarization and were calculated using rigorous coupled wave (RCW) analysis.5-7 The apertures 

considered in this study were all right circular cones having a half-angle α.    

There are two limits that Eq. (8) can take.  Either the fields add incoherently as intensities, so that  
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or they add coherently as fields, so that  
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The extent to which the actual behavior falls between these two limits can be expressed by a degree of coherence, 



4 

 ( )
1/ 2

22

inside outside inside outside
c S S S S∗ ∗= , (15) 

which takes the value 0c =  when the fields are incoherent, and 1c =  when they are coherent.  The averages given in 

Eq. (15) are averages over the region subtended by the detector aperture. 

(a) (b) (c)

 

Figure 2. The diffraction pattern calculated for normally-incident Gaussian beam (a) without a target, Stotal, (b) from 

inside of a square target, Sinside, and (c) from outside of a square target, Soutside.  The target dimensions were 50 µm × 

50 µm, the beam radius was 20 µm, and the horizontal and vertical scales are components of the diffracted propaga-

tion vector extending ±0.5 µm−1.  The gray scale corresponds to the square root of the absolute value of the field, 

chosen to enhance visualization of the pattern. 

3. RESULTS 

To illustrate the effects of finite target illumination, we choose a hypothetical square 50 µm × 50 µm target consist-
ing of silicon lines of height 500 nm, width 40 nm, having vertical sides, and pitch 180 nm.  These dimensions are close 

to those for a structure which we have fabricated.8 The region surrounding the target consists of bare silicon, whose 

elevation is the same as that of the top of the grating lines. The outside elevation matters, because that determines the 

relative phase of the contributions inside and outside the target, if there is any coherence. 

We first consider the coherence properties of the diffracted light to determine the regime an instrument is likely to 

operate in.  For that, we consider a normally incident beam of wavelength 532 nm having a beam radius 0w  of 20 µm.  

Figure 2 shows the scalar diffraction pattern from the simply reflected beam (an infinite target), the finite target region, 

and the surrounding region.  Because the target is not illuminated with a plane wave, the diffraction patterns from the 

target and the surrounding region are not complementary, but rather sum to the pattern with no diffraction screen. For 

that reason, they are not entirely coherent, and the degree of coherence depends upon how much of the diffracted pat-

tern one collects. The diffraction patterns are in phase with one another at the center.  An extra node (dark circle near 
the center) is observed in the pattern from the surrounding region.  Outside of the node, the diffraction patterns will 

destructively interfere, reducing the coherence. 

Figure 3 (left) shows the coherence parameters averaged over different size circular detectors.  As expected, we find 

that as one increases the collection aperture, one collects more light.  When α  is about 0.75°, about 95% of the light 

diffracted by the target is collected.  At this collection aperture, however, only about half of the light diffracted by the 

region outside the target is collected.  This fact may suggest that it is best to operate with the collection aperture as 
small as possible, while still collecting most of the target-diffracted light.  However, we find that such operation may be 

ill-advised for other reasons, which become apparent below. 

Figure 3 also shows the degree of coherence averaged between the two diffraction patterns over the collection aper-

ture.  For a very small collection aperture, 1c = , and the fields from the diffraction sources interfere constructively.  As 

the collection aperture increases, the degree of coherence drops.  For a collection aperture with α = 0.75°, the degree of 
coherence is about 11%.  An effect of such coherence will be seen a little later in this paper.   
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Figure 3. The fraction of light collected by a detector that comes from the target, Pinside, (top frames) and the region 

outside the target, Poutside, (middle frames) and the degree of coherence between them, c, (bottom frames).  On the 

left, these quantities are calculated as a function of the collection half angle α when the incident beam is centered on 

the target.  On the right, these quantities are calculated as a function of displacement of the beam on the target for a 

fixed α = 0.75°. Other model parameters are described in the text. 
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Figure 4. Effective s-polarized and p-polarized reflectance as functions of (left) the collection half-angle α when the 

incident beam is centered on the target and (right) the displacement of the beam on the target for a fixed α = 0.75°.  

The curves are (solid) s-polarized signal for 50 µm target, and (dashed) p-polarized signal for 50 µm target.  The ho-
rizontal lines represent the values for s-polarized signal for an infinite grating (dotted), and for p-polarized signal 
from an infinite grating (dash-dot). 
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Figure 3 (right) shows the coherence parameters for α = 0.75° as the target is translated through the beam.  As ex-
pected, the diffracted power from the target collected by the aperture is at a maximum when the target is centered and 

falls off as the target is moved.  Likewise, the light diffracted by the surrounding region increases as more light is inci-

dent upon that region.  What is less intuitive is that the target dimensions, as judged by the width of the feature, appear 

different using the target and the surrounding regions, since the diffraction patterns differ.  The coherence is largest 

when the two sources are equally illuminated. 

Figure 4 shows simulations that include the effects of the finite target grating on a reflectance measurement.  The 

results, as above, are for normal incidence, but show the s- and p-polarized effective reflectances.  On Fig. 4 (left), the 
effective reflectances are shown as functions of aperture size for both a 50 µm target and an infinite target.  For a small 

aperture, the results for the 50 µm target differ significantly from that predicted by an infinite one.    Even at α = 0.75°, 

there is still significant deviation between the finite-target and infinite-target predictions. (That the results are indepen-

dent of polarization for α = 0 is a coincidence.) 

In Fig. 4 (right), we show the calculated effective reflectances as functions of the position of the beam on the target 

for α = 0.75°.  As seen in Fig. 4 (left), the effective reflectances differ from the nominal, infinite target parameters even 
at x0 = 0.  The light diffracted by the target and that diffracted by the surrounding material interfere differently depend-

ing upon where the beam is.  An interesting observation can also be seen: the effective reflectance does not necessarily 

vary monotonically as one varies the position of the beam from centered.  For the target considered, this was quite pro-

nounced in the p-polarized signal, which exhibits a double lobed structure as the target is translated through the beam.    

We have observed this behavior in measurements of 60 µm square targets using a nearly Gaussian-limited beam of 

15 µm spot size and a restricted collection aperture.  The double-lobed structure disappears as the collection aperture is 
increased and the degree of coherence drops to zero. 
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Figure 5. Predicted effective reflectance as a function of wavelength, assuming that the numerical aperture of the 
system is independent of wavelength.  The curves are (solid) s-polarized signal for 50 µm target, (dashed) p-

polarized signal for 50 µm target, (dotted) s-polarized signal for an infinite target, and (dash-dot) p-polarized signal 
for an infinite target. 

We also performed a simulation of a spectroscopic scan.  Here, we make the assumption that the f-number or nu-

merical aperture of the illumination system remains constant. Under such conditions, the beam radius 0w  depends li-

nearly upon the wavelength: 

 0 0 1 1( ) ( ) /w wλ λ λ λ= . (16) 
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We choose 0 (532 nm) 20w = µm and let the collection half-angle continue to be α = 0.75°.  Fig. 5 shows the effective 

reflectances as functions of wavelength for a 50 µm target and an infinite target.  For wavelengths shorter than about 

500 nm, there is little effect of the finite target, because the beam radius is very small.  However, for longer wave-

lengths, there is progressively worse agreement.  

4. DISCUSSION 

The conditions used for the simulations described above were ideal and may not reflect a real operating environ-

ment.  For example, it is rare that a diffraction-limited Gaussian beam is available.  Performing the simulations on more 

realistic beams, however, adds significantly to the computational time, because the integrals in Eqs. (4) and (7) would 

need to be performed numerically.  Furthermore, one would need to know not just the beam profile, but the phase pro-

file as well.  In reality, though, a realistic beam will have a profile with more energy in its wings than that for a single-

mode Gaussian beam, so it is safe to say that the effects mentioned above are likely to be more pronounced.  

The most interesting finding from the simulations is that there can be a net coherence between the light reflected by 

the target and that reflected by the surrounding region.  Anytime fields add coherently, one sees interference effects, 
and those effects can be disproportionately greater than one might expect from intensity arguments alone.  In particular, 

we observed some coherence when we apertured the reflected light and the incident beam profile had significant tails 

extending beyond the target.   

Standardized tests may need to be developed to determine the extent that finite target size is having on a particular 

tool.  One possibility is to have an array of targets having different sizes (L).  Measurements performed on all of the 

targets could be made and compared.  Above some target size, the signatures would remain constant, and one would 

know that target size would be the minimum target size that can be used.  One particularly interesting target for such 

purposes would consist of bare silicon (with a native oxide), with the surrounding region having a thick dielectric coat-

ing (say, oxide or photoresist).  In that case, one would not only know that the minimum acceptable target size has been 

reached, but also that the signature one obtains matches that expected from theory.  The reflection properties of bare 

silicon, after all, are well known, and it is widely used as a standard target for ellipsometry and reflectance measure-

ments  Such a target would be easy to fabricate, since it does not require state-of-the-art fabrication techniques. 

5. CONCLUSIONS 

We have described a theoretical model for the reflection by a scatterometry target of finite size.  We find that under 

some conditions, the measured reflectance is neither a coherent average nor an incoherent average of the reflectance 

over the illuminated part of the target.  Effects were particularly pronounced when the incident beam had significant 

fields outside the target and the reflected light was apertured.  A test is proposed for assessing the minimum target size 

that a tool can use. 
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